

LA-UR-18-29976

Approved for public release; distribution is unlimited.

Title: The Physics of Disorder

Author(s): Reichhardt, Cynthia Jane

Intended for: Fellows' Prize Ceremony presentation

Issued: 2018-10-18

The Physics of Disorder

Cynthia Reichhardt

October 22, 2018

Order versus Disorder

We are good at characterizing ordered states

Triangular lattice

Facecentered cubic lattice

Square lattice

Chiral B20 lattice

Order versus Disorder

We are not good at characterizing disordered states

Disordered Disordered Disordered Disordered

Order versus Disorder

Development of a new language to classify disordered states

Jammed states

- Systems with no tensile strength form a solid through confinement
- **Dynamics: increasing density causes** transition from flowing to jammed
- No temperature, yet transition appears "thermal"

Power law divergence of length scale $\xi \propto (\phi_c - \phi)^{-v}$

Density

Examples of jammed-unjammed transitions

PRE 92, 022203 (2015)

Force transmission in jammed state is very nonuniform

Grain silo collapse

Hurricane Rita evacuation, 2005

Haiti 7.0 earthquake, 2010

Hyperuniform states

- Density fluctuates on short scales but is uniform on large scales
- Structure factor goes to zero at small wavelengths as a power law

Uses for hyperuniformity

- Magnetic vortices in type-II superconductors form a hyperuniform state
 - Exploit this to increase critical current (maximum operating current) of superconductor and improve magnet performance and robustness
 - Future accelerator technology
- Also found in chicken eye

Jiao et al PRE 89, 022721 (2014)

Superconducting magnets at the Large Hadron Collider

Clogged states

Disks sliding through obstacles

Spatially nonuniform

Require long times to form

Associated with memory

τ diverges at a critical obstacle density

$$au \propto (arphi_{
m obs} - arphi_{
m cc})^{\gamma}$$

Sci. Rep. 8, 10252 (2018)

Transitions in the same class as clogging: Plasticity

Cyclically sheared amorphous materials

I. Regev et al, Nature Commun. 6, 8805 (2015)

Dislocation motion under cyclic shear

Disorder and the bridge between scales

Science 280, 2085 (1998)

Summary

- Identification of new categories of disorder
- Jammed states
 - Similar to equilibrium phase transition
 - Length scale diverges as a power law
- Hyperuniform states
 - Nonuniform on short length scales, uniform on large length scales
 - Structure factor goes to zero as a power law
- Clogged states
 - Nonuniform on medium and long length scales
 - Time to form diverges as a power law
- New tools for understanding materials response at long times or under extreme conditions

Coauthors of presented work

Staff/Faculty:

- Irene Beyerlein (LANL, now at UCSB)
- Matthew Hastings (LANL, now at Microsoft)
- Paul Johnson (LANL)
- Andras Libal (Babes-Bolyai University)
- Danielle McDermott (Pacific University)
- Charles Reichhardt (LANL)

Postdocs:

Caizhi Zhou (LANL, now at Missouri S&T)

Graduate students:

Huba Peter (Babes-Bolyai University)

Undergraduate students:

- Jeff Drocco (LANL, now at LLNL)
- Minh Le Quan Thien (Wabash College)

For additional technical details, see http://cnls.lanl.gov/~olson/research.html